All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Increasing Weak Classifier Diversity by Omics Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00234034" target="_blank" >RIV/68407700:21230/15:00234034 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Increasing Weak Classifier Diversity by Omics Networks

  • Original language description

    The common problems in machine learning from omics data are the scarcity of samples, the high number of features and their complex interaction structure. The models built solely from measured data often suffer from overfitting. One of possible methods dealing with overfitting is to use prior knowledge for regularization. This work analyzes contribution of feature interaction networks in regularization of ensemble classifiers representing another approach to overfitting reduction. We study how utilization of feature interaction networks influences diversity of weak classifiers and thus accuracy of the resulting ensemble model. The network and its random walks are used to control the feature randomization during construction of weak classifiers, which makes them more diverse than in the well-known random forest. We experiment with different types of weak classifiers (trees, logistic regression, naive Bayes) and different random walk lengths and demonstrate that diversity of weak classifiers grows with increasing network locality of weak classifiers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 2nd Workshop on Machine Learning in Life Sciences

  • ISBN

    978-83-943803-0-4

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    16-28

  • Publisher name

    ENGINE - European Research Centre of Network Inteligence and Innovation, Wroclaw University of Technology

  • Place of publication

    Wroclaw

  • Event location

    Porto

  • Event date

    Sep 7, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article