Learning Detector of Malicious Network Traffic from Weak Labels
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00235471" target="_blank" >RIV/68407700:21230/15:00235471 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-23461-8_6" target="_blank" >http://dx.doi.org/10.1007/978-3-319-23461-8_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-23461-8_6" target="_blank" >10.1007/978-3-319-23461-8_6</a>
Alternative languages
Result language
angličtina
Original language name
Learning Detector of Malicious Network Traffic from Weak Labels
Original language description
We address the problem of learning a detector of malicious behavior in network traffic. The malicious behavior is detected based on the analysis of network proxy logs that capture malware communication between client and server computers. The conceptualproblem in using the standard supervised learning methods is the lack of sufficiently representative training set containing examples of malicious and legitimate communication. Annotation of individual proxy logs is an expensive process involving security experts and does not scale with constantly evolving malware. However, weak supervision can be achieved on the level of properly defined bags of proxy logs by leveraging internet domain black lists, security reports, and sandboxing analysis. We demonstrate that an accurate detector can be obtained from the collected security intelligence data by using a Multiple Instance Learning algorithm tailored to the Neyman-Pearson problem. We provide a thorough experimental evaluation on a large c
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F12%2F2071" target="_blank" >GAP202/12/2071: Structured Statistical Models for Image Understanding</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Machine Learning and Knowledge Discovery in Databases, Part III
ISBN
978-3-319-23460-1
ISSN
0302-9743
e-ISSN
—
Number of pages
15
Pages from-to
85-99
Publisher name
Springer
Place of publication
Heidelberg
Event location
Porto
Event date
Sep 7, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000363667400009