*Learning to Detect Network Intrusion from a Few Labeled Events and Background Traffic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00239400" target="_blank" >RIV/68407700:21230/15:00239400 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
*Learning to Detect Network Intrusion from a Few Labeled Events and Background Traffic
Original language description
*The goal of this research work was to provide adaptive machine learning model, capable to generalize from an extremely small number of available true attack representatives, with accuracy close to the expert designed process presented in an existing intrusion detection system developed by Cisco, called Camnep. To that aim, we ?rst introduced a fast scalable heuristic procedure for the extraction of generic events from NetFlow tra?c. Second, we proposed an enhanced Random-Forest-based learning model utilizing the small number of available ground truth samples of particular incident types, with the help of a large number of samples generated from background tra?c by the heuristic extraction procedure. The performance of the learned model to identify intrusions was evaluated against Camnep on the same tra?c data, and an interpretative correspondence of the two methods has been analyzed.
Czech name
—
Czech description
—
Classification
Type
V<sub>souhrn</sub> - Summary research report
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2015
Confidentiality
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.
Data specific for result type
Number of pages
13
Place of publication
Praha
Publisher/client name
CISCO SYSTEMS (Czech Republic), s.r.o.
Version
—