Low dimensional explicit feature maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00318480" target="_blank" >RIV/68407700:21230/15:00318480 - isvavai.cz</a>
Result on the web
<a href="http://cmp.felk.cvut.cz/~chum/papers/Chum-ICCV15.pdf" target="_blank" >http://cmp.felk.cvut.cz/~chum/papers/Chum-ICCV15.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV.2015.464" target="_blank" >10.1109/ICCV.2015.464</a>
Alternative languages
Result language
angličtina
Original language name
Low dimensional explicit feature maps
Original language description
Approximating non-linear kernels by finite-dimensional feature maps is a popular approach for speeding up training and evaluation of support vector machines or to encode information into efficient match kernels. We propose a novel method of data independent construction of low dimensional feature maps. The problem is cast as a linear program which jointly considers competing objectives: the quality of the approximation and the dimensionality of the feature map. For both shift-invariant and homogeneous kernels the proposed method achieves a better approximations at the same dimensionality or comparable approximations at lower dimensionality of the feature map compared with state-of-the-art methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LL1303" target="_blank" >LL1303: Large Scale Category Retrieval</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2015 IEEE International Conference on Computer Vision (ICCV 2015)
ISBN
978-1-4673-8391-2
ISSN
1550-5499
e-ISSN
—
Number of pages
9
Pages from-to
4077-4085
Publisher name
IEEE
Place of publication
Piscataway
Event location
Santiago de Chile
Event date
Dec 11, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000380414100456