All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Radial Distortion Homography

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00321165" target="_blank" >RIV/68407700:21230/15:00321165 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/15:00235489 RIV/68407700:21730/15:00321165

  • Result on the web

    <a href="https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Kukelova_Radial_Distortion_Homography_2015_CVPR_paper.pdf" target="_blank" >https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Kukelova_Radial_Distortion_Homography_2015_CVPR_paper.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR.2015.7298663" target="_blank" >10.1109/CVPR.2015.7298663</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Radial Distortion Homography

  • Original language description

    The importance of precise homography estimation is often underestimated even though it plays a crucial role in various vision applications such as plane or planarity detection, scene degeneracy tests, camera motion classification, image stitching, and many more. Ignoring the radial distortion component in homography estimation-even for classical perspective cameras-may lead to significant errors or totally wrong estimates. In this paper, we fill the gap among the homography estimation methods by presenting two algorithms for estimating homography between two cameras with different radial distortions. Both algorithms can handle planar scenes as well as scenes where the relative motion between the cameras is a pure rotation. The first algorithm uses the minimal number of five image point correspondences and solves a nonlinear system of polynomial equations using Grobner basis method. The second algorithm uses a non-minimal number of six image point correspondences and leads to a simple system of two quadratic equations in two unknowns and one system of six linear equations. The proposed algorithms are fast, stable, and can be efficiently used inside a RANSAC loop.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2015: Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-4673-6964-0

  • ISSN

    1063-6919

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    639-647

  • Publisher name

    IEEE Computer Society Press

  • Place of publication

    New York

  • Event location

    Boston

  • Event date

    Jun 7, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000387959200070