Radial Distortion Homography
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00321165" target="_blank" >RIV/68407700:21230/15:00321165 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/15:00235489 RIV/68407700:21730/15:00321165
Result on the web
<a href="https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Kukelova_Radial_Distortion_Homography_2015_CVPR_paper.pdf" target="_blank" >https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Kukelova_Radial_Distortion_Homography_2015_CVPR_paper.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2015.7298663" target="_blank" >10.1109/CVPR.2015.7298663</a>
Alternative languages
Result language
angličtina
Original language name
Radial Distortion Homography
Original language description
The importance of precise homography estimation is often underestimated even though it plays a crucial role in various vision applications such as plane or planarity detection, scene degeneracy tests, camera motion classification, image stitching, and many more. Ignoring the radial distortion component in homography estimation-even for classical perspective cameras-may lead to significant errors or totally wrong estimates. In this paper, we fill the gap among the homography estimation methods by presenting two algorithms for estimating homography between two cameras with different radial distortions. Both algorithms can handle planar scenes as well as scenes where the relative motion between the cameras is a pure rotation. The first algorithm uses the minimal number of five image point correspondences and solves a nonlinear system of polynomial equations using Grobner basis method. The second algorithm uses a non-minimal number of six image point correspondences and leads to a simple system of two quadratic equations in two unknowns and one system of six linear equations. The proposed algorithms are fast, stable, and can be efficiently used inside a RANSAC loop.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CVPR 2015: Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISBN
978-1-4673-6964-0
ISSN
1063-6919
e-ISSN
—
Number of pages
9
Pages from-to
639-647
Publisher name
IEEE Computer Society Press
Place of publication
New York
Event location
Boston
Event date
Jun 7, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000387959200070