Detection of bubbles as concentric circular arrangements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00242872" target="_blank" >RIV/68407700:21230/16:00242872 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00138-016-0749-7" target="_blank" >http://dx.doi.org/10.1007/s00138-016-0749-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00138-016-0749-7" target="_blank" >10.1007/s00138-016-0749-7</a>
Alternative languages
Result language
angličtina
Original language name
Detection of bubbles as concentric circular arrangements
Original language description
The paper proposes a method for the detection of bubble-like transparent objects in a liquid. The detection problem is non-trivial since bubble appearance varies considerably due to different lighting conditions causing contrast reversal and multiple interreflections. We formulate the problem as the detection of concentric circular arrangements (CCA). The CCAs are recovered in a hypothesize-optimize-verify framework. The hypothesis generation is based on sampling from the partially linked components of the non-maximum suppressed responses of oriented ridge filters, and is followed by the CCA parameter estimation. Parameter optimization is carried out by minimizing a novel cost-function. The performance was tested on gas dispersion images of pulp suspension and oil dispersion images. The mean error of gas/oil volume estimation was used as a performance criterion due to the fact that the main goal of the applications driving the research was the bubble volume estimation. The method achieved 28 and 13 % of gas and oil volume estimation errors correspondingly outperforming the OpenCV Circular Hough Transform in both cases and the WaldBoost detector in gas volume estimation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Machine Vision and Applications
ISSN
0932-8092
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
387-396
UT code for WoS article
000373681700007
EID of the result in the Scopus database
2-s2.0-84957656160