All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

States On Orthocomplemented Difference Posets (Extensions)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00300847" target="_blank" >RIV/68407700:21230/16:00300847 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11005-016-0862-6" target="_blank" >http://dx.doi.org/10.1007/s11005-016-0862-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11005-016-0862-6" target="_blank" >10.1007/s11005-016-0862-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    States On Orthocomplemented Difference Posets (Extensions)

  • Original language description

    We continue the investigation of orthocomplemented posets that are endowed with a symmetric difference (ODPs). The ODPs are orthomodular and, therefore, can be viewed as "enriched" quantum logics. In this note, we introduced states on ODPs. We derive their basic properties and study the possibility of extending them over larger ODPs. We show that there are extensions of states from Boolean algebras over unital ODPs. Since unital ODPs do not, in general, have to be set-representable, this result can be applied to a rather large class of ODPs. We then ask the same question after replacing Boolean algebras with "nearly Boolean" ODPs (the pseudocomplemented ODPs). Making use of a few results on ODPs, some known and some new, we construct a pseudocomplemented ODP, P, and a state on P that does not allow for extensions over larger ODPs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Letters in Mathematical Physics

  • ISSN

    0377-9017

  • e-ISSN

  • Volume of the periodical

    106

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    1131-1137

  • UT code for WoS article

    000379609000006

  • EID of the result in the Scopus database