The metric geometry of the Hamming cube and applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00303234" target="_blank" >RIV/68407700:21230/16:00303234 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2140/gt.2016.20.1427" target="_blank" >http://dx.doi.org/10.2140/gt.2016.20.1427</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2140/gt.2016.20.1427" target="_blank" >10.2140/gt.2016.20.1427</a>
Alternative languages
Result language
angličtina
Original language name
The metric geometry of the Hamming cube and applications
Original language description
The Lipschitz geometry of segments of the infinite Hamming cube is studied. Tight estimates on the distortion necessary to embed the segments into spaces of continuous functions on countable compact metric spaces are given. As an application, the first nontrivial lower bounds on the C(K)-distortion of important classes of separable Banach spaces, where K is a countable compact space in the family {[0, omega], [0, omega.2], ... ,[0, omega(2)], ..., [0,omega(k).n], ..., [0, omega(omega)]} are obtained.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Geometry & Topology
ISSN
1465-3060
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
1427-1444
UT code for WoS article
000384753100005
EID of the result in the Scopus database
—