All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Structured Output SVM Prediction of Apparent Age, Gender and Smile From Deep Features

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00304551" target="_blank" >RIV/68407700:21230/16:00304551 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CVPRW.2016.96" target="_blank" >http://dx.doi.org/10.1109/CVPRW.2016.96</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPRW.2016.96" target="_blank" >10.1109/CVPRW.2016.96</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Structured Output SVM Prediction of Apparent Age, Gender and Smile From Deep Features

  • Original language description

    We propose structured output SVM for predicting the apparent age as well as gender and smile from a single face image represented by deep features. We pose the problem of apparent age estimation as an instance of the multi-class structured output SVM classifier followed by a softmax expected value refinement. The gender and smile predictions are treated as binary classification problems. The proposed solution first detects the face in the image and then extracts deep features from the cropped image around the detected face. We use a convolutional neural network with VGG-16 architecture [25] for learning deep features. The network is pretrained on the ImageNet [24] database and then fine-tuned on IMDB-WIKI [21] and ChaLearn 2015 LAP datasets [8]. We validate our methods on the ChaLearn 2016 LAP dataset [9]. Our structured output SVMs are trained solely on ChaLearn 2016 LAP data. We achieve excellent results for both apparent age prediction and gender and smile classification.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops

  • ISBN

    978-1-5090-1437-8

  • ISSN

    2160-7508

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    730-738

  • Publisher name

    IEEE

  • Place of publication

    Piscataway (New Jersey)

  • Event location

    Las Vegas

  • Event date

    Jul 1, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000391572100089