Morita Equivalence for Many-Sorted Enriched Theories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00305035" target="_blank" >RIV/68407700:21230/16:00305035 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10485-015-9406-y" target="_blank" >http://dx.doi.org/10.1007/s10485-015-9406-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10485-015-9406-y" target="_blank" >10.1007/s10485-015-9406-y</a>
Alternative languages
Result language
angličtina
Original language name
Morita Equivalence for Many-Sorted Enriched Theories
Original language description
Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adamek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriched setting, so the result is parametric in the choice of enrichment. Secondly, the result works for a reasonably general notion of a theory: the class of limits in the theory can be varied. As an example of an application of our result, we show enriched and many-sorted Morita equivalence results, and we recover the known results in the ordinary case.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F11%2F1632" target="_blank" >GAP202/11/1632: Algebraic Methods in Proof Theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Categorical Structures
ISSN
0927-2852
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
6
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
825-844
UT code for WoS article
000388577800003
EID of the result in the Scopus database
2-s2.0-84947788672