Learning Predictive Categories Using Lifted Relational Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00302620" target="_blank" >RIV/68407700:21230/17:00302620 - isvavai.cz</a>
Result on the web
<a href="http://ilp16.doc.ic.ac.uk/" target="_blank" >http://ilp16.doc.ic.ac.uk/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-63342-8_9" target="_blank" >10.1007/978-3-319-63342-8_9</a>
Alternative languages
Result language
angličtina
Original language name
Learning Predictive Categories Using Lifted Relational Neural Networks
Original language description
Lifted relational neural networks (LRNNs) are a flexible neuralsymbolic framework based on the idea of lifted modelling. In this paper we show how LRNNs can be easily used to declaratively specify and solve a learning problem in which latent categories of entities and properties need to be jointly induced.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-26999S" target="_blank" >GA17-26999S: Deep relational learning</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-319-63341-1
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
108-119
Publisher name
Springer-Verlag
Place of publication
Berlin
Event location
London
Event date
Sep 4, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—