All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Selective oxidation-induced strengthening of Zr/Nb nanoscale multilayers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00304336" target="_blank" >RIV/68407700:21230/17:00304336 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.actamat.2016.09.021" target="_blank" >http://dx.doi.org/10.1016/j.actamat.2016.09.021</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.actamat.2016.09.021" target="_blank" >10.1016/j.actamat.2016.09.021</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Selective oxidation-induced strengthening of Zr/Nb nanoscale multilayers

  • Original language description

    The paper presents a new approach, based on controlled oxidation of nanoscale metallic multilayers, to produce strong and hard oxide/metal nanocomposite coatings with high strength and good thermal stability. The approach is demonstrated by performing long term annealing on sputtered Zr/Nb nanoscale metallic multilayers and investigating the evolution of their microstructure and mechanical properties by combining analytical transmission electron microscopy, nano-mechanical tests and finite element models. As-deposited multilayers were annealed at 350 °C in air for times ranging between 1 and 336 h. The elastic modulus increased by ~20% and the hardness by ~42% after 15 h of annealing. Longer annealing times did not lead to changes in hardness, although the elastic modulus increased up to 35% after 336 h. The hcp Zr layers were rapidly transformed into monoclinic ZrO2 (in the first 15 h), while the Nb layers were progressively oxidised, from top surface down towards the substrate, to form an amorphous oxide phase at a much lower rate. The sequential oxidation of Zr and Nb layers was key for the oxidation to take place without rupture of the multi-layered structure and without coating spallation, as the plastic deformation of the metallic Nb layers allowed for the partial relieve of the residual stresses developed as a result of the volumetric expansion of the Zr layers upon oxidation. Moreover, the development of residual stresses induced further changes in mechanical properties in relation to the annealing time, as revealed by finite element simulations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

    <a href="/en/project/7E12048" target="_blank" >7E12048: Multiscale Modelling and Materials by Design of interface-controlled Radiation Damage in Crystalline Materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta materialia

  • ISSN

    1359-6454

  • e-ISSN

    1873-2453

  • Volume of the periodical

    122

  • Issue of the periodical within the volume

    January

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000389556300001

  • EID of the result in the Scopus database

    2-s2.0-84989341553