All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Binary pattern dictionary learning for gene expression representation in drosophila imaginal discs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00304934" target="_blank" >RIV/68407700:21230/17:00304934 - isvavai.cz</a>

  • Result on the web

    <a href="http://cmp.felk.cvut.cz/pub/cmp/articles/borovec/Borovec-MCBMIIA2016.pdf" target="_blank" >http://cmp.felk.cvut.cz/pub/cmp/articles/borovec/Borovec-MCBMIIA2016.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-54427-4_40" target="_blank" >10.1007/978-3-319-54427-4_40</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Binary pattern dictionary learning for gene expression representation in drosophila imaginal discs

  • Original language description

    We present an image processing pipeline which accepts a largenumber of images, containing spatial expression information for thousands of genes in Drosophila imaginal discs. We assume that the geneactivations are binary and can be expressed as a union of a small setof non-overlapping spatial patterns, yielding a compact representationof the spatial activation of each gene. This lends itself well to furtherautomatic analysis, with the hope of discovering new biological relationships. Traditionally, the images were labeled manually, which was verytime consuming. The key part of our work is a binary pattern dictionarylearning algorithm, that takes a set of binary images and determinesa set of patterns, which can be used to represent the input images witha small error. We also describe the preprocessing phase, where input images are segmented to recover the activation images and spatially alignedto a common reference. We compare binary pattern dictionary learningto existing alternative methods on synthetic data and also show resultsof the algorithm on real microscopy images of the Drosophila imaginaldiscs.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA14-21421S" target="_blank" >GA14-21421S: Automatic analysis of spatial gene expression patterns</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Vision – ACCV 2016 Workshops

  • ISBN

    978-3-319-54426-7

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    555-569

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Taipei, Taiwan

  • Event date

    Nov 20, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000426193700040