All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

FlexRay ECU mission critical parameters measurement

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00304942" target="_blank" >RIV/68407700:21230/17:00304942 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0263224116307357" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0263224116307357</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.measurement.2016.12.051" target="_blank" >10.1016/j.measurement.2016.12.051</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    FlexRay ECU mission critical parameters measurement

  • Original language description

    Network operation of FlexRay Electronic Control Unit (ECU) in passenger cars is influenced by the significant number of parameters that have to be written into the ECU FlexRay controller. To keep the FlexRay network robust, the correct parameter values must be set in all ECUs of the FlexRay communication cluster. This is not a trivial task since particular ECUs are supplied by different manufacturers and any manufacturer can change some parameter either by mistake or even intentionally. The effect of such a change is generally unpredictable and can often be observed under specific operational conditions only. The most serious effect is a global FlexRay network failure, which usually leads to the fatal vehicle malfunction. Hence it was necessary to develop, implement and validate new dedicated measurement methods, enabling the evaluation of actual values of the most critical FlexRay parameters at the Open Systems Interconnection (OSI) data-link layer and thus the ECUs individual acceptances testing for system integrator verification purposes. As the mass production of FlexRay controllers is not applicable due to a lack of test specific features, deployment of these methods is enabled by utilization of unique FPGA-based FlexRay controller implementation. Proposed measurement methods are focused on parameters specifying the FlexRay wakeup protocol, FlexRay startup procedure, and the FlexRay synchronization mechanism. Each measurement method is described in detail, including its limits and prerequisites. All the developed methods were validated by experiments on real FlexRay networks and results are included in the paper. Two different types of FlexRay controller core (Freescale and Bosch E-Ray) were used in ECU under test (EUT) to eliminate the risk of measurement method dependence on a specific controller implementation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/TE01020020" target="_blank" >TE01020020: Josef Bozek Competence Centre for Automotive Industry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Measurement

  • ISSN

    0263-2241

  • e-ISSN

    1873-412X

  • Volume of the periodical

    100

  • Issue of the periodical within the volume

    March

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    213-222

  • UT code for WoS article

    000394397600025

  • EID of the result in the Scopus database

    2-s2.0-85008879621