Fuzzy adaptive teaching learning-based optimization strategy for the problem of generating mixed strength t-way test suites
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00306039" target="_blank" >RIV/68407700:21230/17:00306039 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S095219761630241X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S095219761630241X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2016.12.014" target="_blank" >10.1016/j.engappai.2016.12.014</a>
Alternative languages
Result language
angličtina
Original language name
Fuzzy adaptive teaching learning-based optimization strategy for the problem of generating mixed strength t-way test suites
Original language description
The teaching learning-based optimization (TLBO) algorithm has shown competitive performance in solving numerous real-world optimization problems. Nevertheless, this algorithm requires better control for exploitation and exploration to prevent premature convergence (i.e., trapped in local optima), as well as enhance solution diversity. Thus, this paper proposes a new TLBO variant based on Mamdani fuzzy inference system, called ATLBO, to permit adaptive selection of its global and local search operations. In order to assess its performances, we adopt ATLBO for the mixed strength t-way test generation problem. Experimental results reveal that ATLBO exhibits competitive performances against the original TLBO and other meta-heuristic counterparts.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Engineering Applications of Artificial Intelligence
ISSN
0952-1976
e-ISSN
1873-6769
Volume of the periodical
59
Issue of the periodical within the volume
March
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
35-50
UT code for WoS article
000393937400004
EID of the result in the Scopus database
2-s2.0-85007109693