All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Linear combinations of features as leaf nodes in symbolic regression

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00313865" target="_blank" >RIV/68407700:21230/17:00313865 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/17:00313865

  • Result on the web

    <a href="https://dl.acm.org/citation.cfm?id=3076009" target="_blank" >https://dl.acm.org/citation.cfm?id=3076009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3067695.3076009" target="_blank" >10.1145/3067695.3076009</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Linear combinations of features as leaf nodes in symbolic regression

  • Original language description

    We propose a new type of leaf node for use in Symbolic Regression (SR) that performs linear combinations of feature variables (LCF). LCF's weights are tuned using a gradient method based on back-propagation algorithm known from neural networks. Multi-Gene Genetic Programming (MGGP) was chosen as a baseline model. As a sanity check, we experimentally show that LCFs improve the performance of the baseline on a rotated toy SR problem. We then perform a thorougher experimental study on a number of artificial and real-world SR benchmarks. The usage of LCFs in MGGP statically improved the results in 5 cases out of 9, while it worsen them in only a single case.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA15-22731S" target="_blank" >GA15-22731S: Symbolic Regression for Reinforcement Learning in Continuous Spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Genetic and Evolutionary Computation Conference Companion

  • ISBN

    978-1-4503-4939-0

  • ISSN

  • e-ISSN

  • Number of pages

    2

  • Pages from-to

    145-146

  • Publisher name

    ACM

  • Place of publication

    New York

  • Event location

    Berlín

  • Event date

    Jul 15, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article