All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning a Peripersonal Space Representation as a Visuo-Tactile Prediction Task

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315236" target="_blank" >RIV/68407700:21230/17:00315236 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-68600-4_13" target="_blank" >http://dx.doi.org/10.1007/978-3-319-68600-4_13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-68600-4_13" target="_blank" >10.1007/978-3-319-68600-4_13</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning a Peripersonal Space Representation as a Visuo-Tactile Prediction Task

  • Original language description

    The space immediately surrounding our body, or peripersonal space, is crucial for interaction with the environment. In primate brains, specific neural circuitry is responsible for its encoding. An important component is a safety margin around the body that draws on visuo-tactile interactions: approaching stimuli are registered by vision and processed, producing anticipation or prediction of contact in the tactile modality. The mechanisms of this representation and its development are not understood. We propose a computational model that addresses this: a neural network composed of a Restricted Boltzmann Machine and a feedforward neural network. The former learns in an unsupervised manner to represent position and velocity features of the stimulus. The latter is trained in a supervised way to predict the position of touch (contact). Unique to this model, it considers: (i) stimulus position and velocity, (ii) uncertainty of all variables, and (iii) not only multisensory integration but also prediction.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ17-15697Y" target="_blank" >GJ17-15697Y: Robot self-calibration and safe physical human-robot interaction inspired by body representations in primate brains</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2017, Part I

  • ISBN

    978-3-319-68599-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    101-109

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Alghero

  • Event date

    Sep 11, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article