Learning a Peripersonal Space Representation as a Visuo-Tactile Prediction Task
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315236" target="_blank" >RIV/68407700:21230/17:00315236 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-68600-4_13" target="_blank" >http://dx.doi.org/10.1007/978-3-319-68600-4_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-68600-4_13" target="_blank" >10.1007/978-3-319-68600-4_13</a>
Alternative languages
Result language
angličtina
Original language name
Learning a Peripersonal Space Representation as a Visuo-Tactile Prediction Task
Original language description
The space immediately surrounding our body, or peripersonal space, is crucial for interaction with the environment. In primate brains, specific neural circuitry is responsible for its encoding. An important component is a safety margin around the body that draws on visuo-tactile interactions: approaching stimuli are registered by vision and processed, producing anticipation or prediction of contact in the tactile modality. The mechanisms of this representation and its development are not understood. We propose a computational model that addresses this: a neural network composed of a Restricted Boltzmann Machine and a feedforward neural network. The former learns in an unsupervised manner to represent position and velocity features of the stimulus. The latter is trained in a supervised way to predict the position of touch (contact). Unique to this model, it considers: (i) stimulus position and velocity, (ii) uncertainty of all variables, and (iii) not only multisensory integration but also prediction.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GJ17-15697Y" target="_blank" >GJ17-15697Y: Robot self-calibration and safe physical human-robot interaction inspired by body representations in primate brains</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Networks and Machine Learning – ICANN 2017, Part I
ISBN
978-3-319-68599-1
ISSN
0302-9743
e-ISSN
—
Number of pages
9
Pages from-to
101-109
Publisher name
Springer, Cham
Place of publication
—
Event location
Alghero
Event date
Sep 11, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—