Learning with Proxy Supervision for End-To-End Visual Learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315382" target="_blank" >RIV/68407700:21230/17:00315382 - isvavai.cz</a>
Result on the web
<a href="https://www.semanticscholar.org/paper/Learning-with-proxy-supervision-for-end-to-end-vis-Cermak-Angelova/0a572c16e635312f118d1a53f0ff6446402d3c32" target="_blank" >https://www.semanticscholar.org/paper/Learning-with-proxy-supervision-for-end-to-end-vis-Cermak-Angelova/0a572c16e635312f118d1a53f0ff6446402d3c32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IVS.2017.7995690" target="_blank" >10.1109/IVS.2017.7995690</a>
Alternative languages
Result language
angličtina
Original language name
Learning with Proxy Supervision for End-To-End Visual Learning
Original language description
Learning with deep neural networks forms the state-of-The-Art in many tasks such as image classification, image detection, speech recognition, text analysis. We here set out to gain understanding in learning in an 'end-To-end' manner for an autonomous vehicle, which refers to directly learning the decision which will result from the perception of the scene. For example, we consider learning a binary 'stop'/'go' decision, with respect to pedestrians, given the input image. In this work we propose to use additional information, referred to as 'proxy supervision', for improved learning and study its effects on the overall performance. We show that the proxy labels significantly improve the robustness of learning, while achieving as good, or better, accuracy than in the original task of binary classification.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of IEEE Intelligent Vehicles Symposium
ISBN
978-1-5090-4804-5
ISSN
1931-0587
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
IEEE (Institute of Electrical and Electronics Engineers)
Place of publication
—
Event location
Redondo Beach
Event date
Jun 11, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000425212700001