Vinyl Record Title Identification Based on Short Sound Sample
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315796" target="_blank" >RIV/68407700:21230/17:00315796 - isvavai.cz</a>
Result on the web
<a href="http://www.humusoft.cz/ftp/www/papers/tcp2017/026_moldan.pdf" target="_blank" >http://www.humusoft.cz/ftp/www/papers/tcp2017/026_moldan.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
Rozpoznání titulu gramofonové desky podle krátké ukázky
Original language description
Tento článek popisuje návrh a implementaci vlastního řešení pro úlohu identifikace nahrávky, se zaměřením na identifikaci nahrávek z gramofonové desky. Algoritmus je implementován v programovém prostředí MATLAB. Pro klasifikaci nahrávky a vyhledávání v databázi nahrávek je zvolena metoda strojového učení K-nearest neighbors (k-nejbližších sousedů, KNN). Pro parametrizaci nahrávky je použito již připravených parametrů z Music Information Retrieval (MIR) Toolboxu, nahrávka je klasifikována pomocí parametrů tempo a mode. Pro testování algoritmu byla jako vedlejší funkcionalita programu vytvořena možnost přidat typické zvukové atributy gramofonových desek do existujících nahrávek. Po natrénování na množině všech 269 dostupných masterů nahrávek byl program schopen rozpoznat 92,8 % nahrávek uměle znehodnocených atributy gramofonové desky (posunutí začátku, snížení amplitudy, přidání šumu a ztráta vysokých frekvencí) a zároveň všech 5 dostupných nahrávek pořízených z gramofonové desky. Pro ovládání programu bylo také vytvořené jednoduché grafické rozhraní
Czech name
Rozpoznání titulu gramofonové desky podle krátké ukázky
Czech description
Tento článek popisuje návrh a implementaci vlastního řešení pro úlohu identifikace nahrávky, se zaměřením na identifikaci nahrávek z gramofonové desky. Algoritmus je implementován v programovém prostředí MATLAB. Pro klasifikaci nahrávky a vyhledávání v databázi nahrávek je zvolena metoda strojového učení K-nearest neighbors (k-nejbližších sousedů, KNN). Pro parametrizaci nahrávky je použito již připravených parametrů z Music Information Retrieval (MIR) Toolboxu, nahrávka je klasifikována pomocí parametrů tempo a mode. Pro testování algoritmu byla jako vedlejší funkcionalita programu vytvořena možnost přidat typické zvukové atributy gramofonových desek do existujících nahrávek. Po natrénování na množině všech 269 dostupných masterů nahrávek byl program schopen rozpoznat 92,8 % nahrávek uměle znehodnocených atributy gramofonové desky (posunutí začátku, snížení amplitudy, přidání šumu a ztráta vysokých frekvencí) a zároveň všech 5 dostupných nahrávek pořízených z gramofonové desky. Pro ovládání programu bylo také vytvořené jednoduché grafické rozhraní
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
24 th Annual Conference Proceedings Technical Computing Prague 2017
ISBN
978-80-7592-002-7
ISSN
2336-1662
e-ISSN
—
Number of pages
8
Pages from-to
1-8
Publisher name
HUMUSOFT s.r.o.
Place of publication
Praha
Event location
Praha
Event date
Nov 8, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—