All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Combination of Visible Light and Radio Frequency Bands for Device-to-Device Communication

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00317591" target="_blank" >RIV/68407700:21230/17:00317591 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Combination of Visible Light and Radio Frequency Bands for Device-to-Device Communication

  • Original language description

    Future mobile networks are supposed to serve high data rates to users. To accommodate the high data rates, a direct communication between nearby mobile terminals (MTs) can be exploited. This type of communication in mobile networks is known as Device-to-device (D2D). Furthermore, a communication in high frequency bands, such as, visible light communication (VLC), is also foreseen as an enabler for the high data rates. In a conventional D2D communication, pairs of the communicating MTs should reuse the same frequencies to maximize spectral efficiency of the system. However, this implies either interference among the D2D pairs or a need for complex resource allocation algorithms. In this paper, we introduce a new concept for D2D communication combining VLC and RF technologies in order to maximize capacity of the system. The objective of this paper is to analyze operational limits of the proposed concept and to assess potential capacity gains to give motivation for future research in this area. Thus, we also discuss several practical issues related to the proposed RF--VLC D2D concept and outline major research challenges. The performance analysis carried out in this paper shows that the RF--VLC D2D is able to improve the capacity in an indoor scenario by a factor of 4.1 and 1.5 when compared to standalone RF D2D and VLC D2D, respectively.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/GA17-17538S" target="_blank" >GA17-17538S: Combined Radio Frequency and Visible Light Bands for Device-to-Device communication</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    The 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2017)

  • ISBN

    978-1-5386-3531-5

  • ISSN

  • e-ISSN

    2166-9589

  • Number of pages

    7

  • Pages from-to

    1-7

  • Publisher name

    IEEE

  • Place of publication

    Piscataway, NJ

  • Event location

    Montreal

  • Event date

    Oct 8, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000426970903092