All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Malware Detection by Analysing Encrypted Network Traffic with Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00317842" target="_blank" >RIV/68407700:21230/17:00317842 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-71246-8_5" target="_blank" >http://dx.doi.org/10.1007/978-3-319-71246-8_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-71246-8_5" target="_blank" >10.1007/978-3-319-71246-8_5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Malware Detection by Analysing Encrypted Network Traffic with Neural Networks

  • Original language description

    We study the problem of detecting malware on client computers based on the analysis of HTTPS traffic. Here, malware has to be detected based on the host address, timestamps, and data volume information of the computer’s network traffic. We develop a scalable protocol that allows us to collect network flows of known malicious and benign applications as training data and derive a malware-detection method based on a neural embedding of domain names and a long short-term memory network that processes network flows. We study the method’s ability to detect new malware in a large-scale empirical study.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Machine Learning and Knowledge Discovery in Databases

  • ISBN

    978-3-319-71245-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    73-88

  • Publisher name

    Springer International Publishing AG

  • Place of publication

    Cham

  • Event location

    Skopje

  • Event date

    Sep 18, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article