All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Eilenberg theorems for free

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00318582" target="_blank" >RIV/68407700:21230/17:00318582 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.43" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.43</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.43" target="_blank" >10.4230/LIPIcs.MFCS.2017.43</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Eilenberg theorems for free

  • Original language description

    Eilenberg-type correspondences, relating varieties of languages (e.g., of finite words, infinite words, or trees) to pseudovarieties of finite algebras, form the backbone of algebraic language theory. We show that they all arise from the same recipe: one models languages and the algebras recognizing them by monads on an algebraic category, and applies a Stone-type duality. Our main contribution is a variety theorem that covers e.g. Wilke’s and Pin’s work on infinity-languages, the variety theorem for cost functions of Daviaud, Kuperberg, and Pin, and unifies the two categorical approaches of Bojańczyk and of Adámek et al. In addition we derive new results, such as an extension of the local variety theorem of Gehrke, Grigorieff, and Pin from finite to infinite words.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)

  • ISBN

    978-3-95977-046-0

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    1-14

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Aalborg

  • Event date

    Aug 21, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article