All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Pruning Hypothesis Spaces Using Learned Domain Theories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00320168" target="_blank" >RIV/68407700:21230/18:00320168 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-78090-0_11" target="_blank" >http://dx.doi.org/10.1007/978-3-319-78090-0_11</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-78090-0_11" target="_blank" >10.1007/978-3-319-78090-0_11</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Pruning Hypothesis Spaces Using Learned Domain Theories

  • Original language description

    We present a method to prune hypothesis spaces in the con- text of inductive logic programming. The main strategy of our method consists in removing hypotheses that are equivalent to already consid- ered hypotheses. The distinguishing feature of our method is that we use learned domain theories to check for equivalence, in contrast to existing approaches which only prune isomorphic hypotheses. Specifically, we use such learned domain theories to saturate hypotheses and then check if these saturations are isomorphic. While conceptually simple, we exper- imentally show that the resulting pruning strategy can be surprisingly effective in reducing both computation time and memory consumption when searching for long clauses, compared to approaches that only con- sider isomorphism.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-26999S" target="_blank" >GA17-26999S: Deep relational learning</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Inductive Logic Programming 2017

  • ISBN

    978-3-319-78089-4

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    152-168

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Orléans

  • Event date

    Sep 4, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article