Structure of abelian parts of C*-algebras and its preservers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00322039" target="_blank" >RIV/68407700:21230/18:00322039 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.14232/actasm-017-582-8" target="_blank" >http://dx.doi.org/10.14232/actasm-017-582-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14232/actasm-017-582-8" target="_blank" >10.14232/actasm-017-582-8</a>
Alternative languages
Result language
angličtina
Original language name
Structure of abelian parts of C*-algebras and its preservers
Original language description
The context poset of Abelian C*-subalgebras of a given C*-algebra is an operator theoretic invariant of growing interest. We review recent results describing order isomorphisms between context posets in terms of Jordan type maps (linear or not) between important types of operator algebras. We discuss the important role of the generalized Gleason theorem on linearity of maps preserving linear combinations of commuting elements for studying symmetries of context posets. Related results on maps multiplicative with respect to commuting elements are investigated.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-00941S" target="_blank" >GA17-00941S: Topological and geometrical properties of Banach spaces and operator algebras II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Scientiarum Mathematicarum
ISSN
0001-6969
e-ISSN
—
Volume of the periodical
84
Issue of the periodical within the volume
1-2
Country of publishing house
HU - HUNGARY
Number of pages
13
Pages from-to
263-275
UT code for WoS article
000434265900015
EID of the result in the Scopus database
2-s2.0-85048294906