All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-class Model Fitting by Energy Minimization and Mode-Seeking

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00323974" target="_blank" >RIV/68407700:21230/18:00323974 - isvavai.cz</a>

  • Result on the web

    <a href="http://openaccess.thecvf.com/content_ECCV_2018/papers/Daniel_Barath_Multi-Class_Model_Fitting_ECCV_2018_paper.pdf" target="_blank" >http://openaccess.thecvf.com/content_ECCV_2018/papers/Daniel_Barath_Multi-Class_Model_Fitting_ECCV_2018_paper.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-01270-0_14" target="_blank" >10.1007/978-3-030-01270-0_14</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-class Model Fitting by Energy Minimization and Mode-Seeking

  • Original language description

    We propose a general formulation, called Multi-X, for multi-class multi-instance model fitting – the problem of interpreting the input data as a mixture of noisy observations originating from multiple instances of multiple classes. We extend the commonly used α-expansion-based technique with a new move in the label space. The move replaces a set of labels with the corresponding density mode in the model parameter domain, thus achieving fast and robust optimization. Key optimization parameters like the bandwidth of the mode seeking are set automatically within the algorithm. Considering that a group of outliers may form spatially coherent structures in the data, we propose a cross-validation-based technique removing statistically insignificant instances. Multi-X outperforms significantly the state-of-the-art on publicly available datasets for diverse problems: multiple plane and rigid motion detection; motion segmentation; simultaneous plane and cylinder fitting; circle and line fitting.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ECCV2018: Proceedings of the European Conference on Computer Vision, Part XVI

  • ISBN

    978-3-030-01269-4

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    229-245

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Munich

  • Event date

    Sep 8, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article