Multi-class Model Fitting by Energy Minimization and Mode-Seeking
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00323974" target="_blank" >RIV/68407700:21230/18:00323974 - isvavai.cz</a>
Result on the web
<a href="http://openaccess.thecvf.com/content_ECCV_2018/papers/Daniel_Barath_Multi-Class_Model_Fitting_ECCV_2018_paper.pdf" target="_blank" >http://openaccess.thecvf.com/content_ECCV_2018/papers/Daniel_Barath_Multi-Class_Model_Fitting_ECCV_2018_paper.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-01270-0_14" target="_blank" >10.1007/978-3-030-01270-0_14</a>
Alternative languages
Result language
angličtina
Original language name
Multi-class Model Fitting by Energy Minimization and Mode-Seeking
Original language description
We propose a general formulation, called Multi-X, for multi-class multi-instance model fitting – the problem of interpreting the input data as a mixture of noisy observations originating from multiple instances of multiple classes. We extend the commonly used α-expansion-based technique with a new move in the label space. The move replaces a set of labels with the corresponding density mode in the model parameter domain, thus achieving fast and robust optimization. Key optimization parameters like the bandwidth of the mode seeking are set automatically within the algorithm. Considering that a group of outliers may form spatially coherent structures in the data, we propose a cross-validation-based technique removing statistically insignificant instances. Multi-X outperforms significantly the state-of-the-art on publicly available datasets for diverse problems: multiple plane and rigid motion detection; motion segmentation; simultaneous plane and cylinder fitting; circle and line fitting.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ECCV2018: Proceedings of the European Conference on Computer Vision, Part XVI
ISBN
978-3-030-01269-4
ISSN
0302-9743
e-ISSN
—
Number of pages
17
Pages from-to
229-245
Publisher name
Springer, Cham
Place of publication
—
Event location
Munich
Event date
Sep 8, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—