All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00325470" target="_blank" >RIV/68407700:21230/18:00325470 - isvavai.cz</a>

  • Result on the web

    <a href="http://cmp.felk.cvut.cz/~radenfil/publications/Radenovic-CVPR18.pdf" target="_blank" >http://cmp.felk.cvut.cz/~radenfil/publications/Radenovic-CVPR18.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR.2018.00598" target="_blank" >10.1109/CVPR.2018.00598</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

  • Original language description

    In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LL1303" target="_blank" >LL1303: Large Scale Category Retrieval</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2018: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-5386-6420-9

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    10

  • Pages from-to

    5706-5715

  • Publisher name

    IEEE

  • Place of publication

    Piscataway, NJ

  • Event location

    Salt Lake City

  • Event date

    Jun 19, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000457843605089