System identification using monotonic fuzzy models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00327372" target="_blank" >RIV/68407700:21230/18:00327372 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
System identification using monotonic fuzzy models
Original language description
Fuzzy models became very popular tool for identification of nonlinear systems from input-output data. Unfortunately, their behaviour is considerably deteriorated in the regions where the data is sparse or contaminated by a noise. The paper shows that when a nonlinear function describing the systems is monotonic then a fuzzy system guaranteeing monotonicity significantly improves the performance of the fuzzy model. Furthermore, sufficient conditions for monotonicity of Takagi-Sugeno fuzzy systems with Gaussian membership functions are derived.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GA18-26278S" target="_blank" >GA18-26278S: Incorporation of Prior Knowledge for Identification of Nonlinear Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů