All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fast Motion Deblurring for Feature Detection and Matching Using Inertial Measurements

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00327981" target="_blank" >RIV/68407700:21230/18:00327981 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ICPR.2018.8546041" target="_blank" >http://dx.doi.org/10.1109/ICPR.2018.8546041</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICPR.2018.8546041" target="_blank" >10.1109/ICPR.2018.8546041</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fast Motion Deblurring for Feature Detection and Matching Using Inertial Measurements

  • Original language description

    Many computer vision and image processing applications rely on local features. It is well-known that motion blur decreases the performance of traditional feature detectors and descriptors. We propose an inertial-based deblurring method for improving the robustness of existing feature detectors and descriptors against the motion blur. Unlike most deblurring algorithms, the method can handle spatially-variant blur and rolling shutter distortion. Furthermore, it is capable of running in real-time contrary to state-of-the-art algorithms. The limitations of inertial-based blur estimation are taken into account by validating the blur estimates using image data. The evaluation shows that when the method is used with traditional feature detector and descriptor, it increases the number of detected keypoints, provides higher repeatability and improves the localization accuracy. We also demonstrate that such features will lead to more accurate and complete reconstructions when used in the application of 3D visual reconstruction.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2018 24rd International Conference on Pattern Recognition (ICPR)

  • ISBN

    978-1-5386-3788-3

  • ISSN

  • e-ISSN

    1051-4651

  • Number of pages

    6

  • Pages from-to

    3068-3073

  • Publisher name

    IEEE

  • Place of publication

    Piscataway, NJ

  • Event location

    Beijing

  • Event date

    Aug 20, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000455146803013