All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Artifact Detection in Multichannel Sleep EEG using Random Forest Classifier

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00328193" target="_blank" >RIV/68407700:21230/18:00328193 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21460/18:00328193 RIV/68407700:21730/18:00328193 RIV/00216208:11120/18:43917758

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/8621374" target="_blank" >https://ieeexplore.ieee.org/document/8621374</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/BIBM.2018.8621374" target="_blank" >10.1109/BIBM.2018.8621374</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Artifact Detection in Multichannel Sleep EEG using Random Forest Classifier

  • Original language description

    Detection of artifacts in sleep electroencephalography (EEG) is one of the important tasks on the preprocessing step. Despite many algorithms of artifact detection developed through years, many of them lose their benefits in sleep EEG application. This study proposes a method of artifact detection based on a classification of quasi-stationary EEG epochs with random forest classifier. The method was tested on data of three sleep stages and pre-sleep wake EEG. Results showed 16% increase in F1 for the wake and 9%, 5% and 16% for different sleep stages in comparison to a baseline. All false detection at every presented sleep stage is investigated.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

    <a href="/en/project/GA17-20480S" target="_blank" >GA17-20480S: Temporal context in analysis of long-term non-stationary multidimensional signal</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) - Proceedings

  • ISBN

    978-1-5386-5488-0

  • ISSN

  • e-ISSN

  • Number of pages

    3

  • Pages from-to

    2803-2805

  • Publisher name

    IEEE

  • Place of publication

  • Event location

    Madrid

  • Event date

    Dec 3, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article