All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sampling-Based Motion Planning for Tracking Evolution of Dynamic Tunnels in Molecular Dynamics Simulations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00326510" target="_blank" >RIV/68407700:21230/19:00326510 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14330/19:00107165

  • Result on the web

    <a href="https://doi.org/10.1007/s10846-018-0877-6" target="_blank" >https://doi.org/10.1007/s10846-018-0877-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10846-018-0877-6" target="_blank" >10.1007/s10846-018-0877-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sampling-Based Motion Planning for Tracking Evolution of Dynamic Tunnels in Molecular Dynamics Simulations

  • Original language description

    Proteins are involved in many biochemical processes. The behavior of proteins is highly influenced by the presence of internal void space, in literature denoted as tunnels or cavities. Tunnels are paths leading from an inner protein active site to its surface. The knowledge about tunnels and their evolution over time, captured in molecular dynamics simulations, provides an insight into important protein properties (e.g., their stability or activity). For each individual snapshot of molecular dynamics, tunnels can be detected using Voronoi diagrams and then aggregated over time to trace their behavior. However, this approach is suitable only when a given tunnel is detected in all snapshots of molecular dynamics. This is often not the case of traditionally used approaches to tunnel computation. When a tunnel becomes too narrow in a particular snapshot, the existing approaches cannot detect this case and the tunnel completely disappears from the results. On the other hand, this situation can be quite common as tunnels move, disappear and appear again, split, or merge. Therefore, in this paper we propose a method which enables to trace also tunnels in those missing snapshots. We call them dynamic tunnels and we use the sampling-based motion planning to compute them. The Rapidly Exploring Random Tree (RRT) algorithm is used to explore the void space in each frame of the protein dynamics. The void space is represented by a tree structure that is transferred to the next frame of the dynamics and updated to remove collisions and to cover newly emerged free regions of the void space. If the void space reaches the surface of the protein, a dynamic tunnel is reconstructed by tracking back in the tree towards a desired place (i.e., the active site).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-07690S" target="_blank" >GA17-07690S: Methods of Identification and Visualization of Tunnels for Flexible Ligands in Dynamic Proteins</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Intelligent and Robotic Systems

  • ISSN

    0921-0296

  • e-ISSN

    1573-0409

  • Volume of the periodical

    93

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    23

  • Pages from-to

    763-785

  • UT code for WoS article

    000459439400024

  • EID of the result in the Scopus database

    2-s2.0-85048538078