Deep Convolutional Neural Networks for DGA Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00331774" target="_blank" >RIV/68407700:21230/19:00331774 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007%2F978-3-030-20787-8_23.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-3-030-20787-8_23.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-20787-8_23" target="_blank" >10.1007/978-3-030-20787-8_23</a>
Alternative languages
Result language
angličtina
Original language name
Deep Convolutional Neural Networks for DGA Detection
Original language description
A Domain Generation Algorithm (DGA) is an algorithm to generate domain names in a deterministic but seemly random way. Malware use DGAs to generate the next domain to access the Command & Control (C&C) communication server. Given the simplicity of the generation process and speed at which the domains are generated, a fast and accurate detection method is required. Convolutional neural network (CNN) are well known for performing real-time detection in fields like image and video recognition. Therefore, they seemed suitable for DGA detection. The present work provides an analysis and comparison of the detection performance of a CNN for DGA detection. A CNN with a minimal architecture complexity was evaluated on a dataset with 51 DGA malware families and normal domains. Despite its simple architecture, the resulting CNN model correctly detected more than 97% of total DGA domains with a false positive rate close to 0.7%. 2019, Springer Nature Switzerland AG.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/TH02010990" target="_blank" >TH02010990: Ludus: Machine Learning and Game Theory to Collaboratively Defend Against Internet Threats</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computer Science - CACIS 2018
ISBN
978-3-030-20786-1
ISSN
1865-0929
e-ISSN
—
Number of pages
14
Pages from-to
327-340
Publisher name
Springer VDI Verlag
Place of publication
Düsseldorf
Event location
Tandil
Event date
Oct 8, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—