All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep Convolutional Neural Networks for DGA Detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00331774" target="_blank" >RIV/68407700:21230/19:00331774 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1007%2F978-3-030-20787-8_23.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-3-030-20787-8_23.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-20787-8_23" target="_blank" >10.1007/978-3-030-20787-8_23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep Convolutional Neural Networks for DGA Detection

  • Original language description

    A Domain Generation Algorithm (DGA) is an algorithm to generate domain names in a deterministic but seemly random way. Malware use DGAs to generate the next domain to access the Command & Control (C&C) communication server. Given the simplicity of the generation process and speed at which the domains are generated, a fast and accurate detection method is required. Convolutional neural network (CNN) are well known for performing real-time detection in fields like image and video recognition. Therefore, they seemed suitable for DGA detection. The present work provides an analysis and comparison of the detection performance of a CNN for DGA detection. A CNN with a minimal architecture complexity was evaluated on a dataset with 51 DGA malware families and normal domains. Despite its simple architecture, the resulting CNN model correctly detected more than 97% of total DGA domains with a false positive rate close to 0.7%. 2019, Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/TH02010990" target="_blank" >TH02010990: Ludus: Machine Learning and Game Theory to Collaboratively Defend Against Internet Threats</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Science - CACIS 2018

  • ISBN

    978-3-030-20786-1

  • ISSN

    1865-0929

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    327-340

  • Publisher name

    Springer VDI Verlag

  • Place of publication

    Düsseldorf

  • Event location

    Tandil

  • Event date

    Oct 8, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article