All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Feed-forward Propagation in Probabilistic Neural Networks with Categorical and Max Layers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332295" target="_blank" >RIV/68407700:21230/19:00332295 - isvavai.cz</a>

  • Result on the web

    <a href="https://openreview.net/forum?id=SkMuPjRcKQ" target="_blank" >https://openreview.net/forum?id=SkMuPjRcKQ</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Feed-forward Propagation in Probabilistic Neural Networks with Categorical and Max Layers

  • Original language description

    Probabilistic Neural Networks deal with various sources of stochasticity: input noise, dropout, stochastic neurons, parameter uncertainties modeled as random variables, etc. In this paper we revisit a feed-forward propagation approach that allows one to estimate for each neuron its mean and variance wrt all mentioned sources of stochasticity. In contrast, standard NNs propagate only point estimates, discarding the uncertainty. Methods propagating also the variance have been proposed by several authors in different context. The view presented here attempts to clarify the assumptions and derivation behind such methods, relate them to classical NNs and broaden their scope of applicability. The main technical contributions are new approximations for the distributions of argmax and max-related transforms, which allow for fully analytic uncertainty propagation in networks with softmax and max-pooling layers as well as leaky ReLU activations. We evaluate the accuracy of the approximation and suggest a simple calibration. Applying the method to networks with dropout allows for faster training and gives improved test likelihoods without the need of sampling.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů