All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High-frequency resonance overvoltages in distribution network with large photovoltaic power plant

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332521" target="_blank" >RIV/68407700:21230/19:00332521 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    High-frequency resonance overvoltages in distribution network with large photovoltaic power plant

  • Original language description

    The wide usage of power electronics and distributed resources in modern power systems bring new challenges for power quality and stability. Switching of power electronic components produces a wide spectrum of voltage and current interferences which are superimposed on power frequency. High-frequency components are usually monitored and filtered up to 40th harmonic under many technical standards. However significant harmonics and impulses with fundamental frequencies up to tens of kilohertz can arise in power systems as a consequence of mutual interaction between passive parameters (resistance, inductance, and capacitance) of the distribution network and switching of power electronic devices. These components on voltage deal repetitive significant overvoltages which excessively stress insulation systems of medium and high voltage devices. The theoretical study presented here is based on numerical simulation to prove the development and propagation of the high-frequency harmonic distortions produced by a large photovoltaic power plant. The modeled power plant consists of some smaller power units with filters and own power transformers which operate in parallel into medium voltage distribution level. The medium voltage distribution system contains self-consumption, cable and overhead power lines and connection to the high voltage transmission system via power transformer. All modeled components are substituted by extended equivalent circuits respecting the propagation of high-frequency components of currents and voltages. Sensitivity analyses of some parameters of the distribution network to the formation of high-frequency distortions were carried out and discussed.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    10th International Scientific Symposium on Electrical Power Engineering, ELEKTROENERGETIKA 2019

  • ISBN

    9788055333243

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    529-534

  • Publisher name

    TU Košice, FEI

  • Place of publication

    Košice

  • Event location

    Stará Lesná

  • Event date

    Sep 16, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article