All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rotational Eddy Current Speed Sensor

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332633" target="_blank" >RIV/68407700:21230/19:00332633 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/10467/85886" target="_blank" >http://hdl.handle.net/10467/85886</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TMAG.2019.2918163" target="_blank" >10.1109/TMAG.2019.2918163</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rotational Eddy Current Speed Sensor

  • Original language description

    A novel eddy current speed sensor is developed to measure the rotational speed of conductive objects. The sensor consists of one excitation coil and two pick-up coils around a rotating cylinder or rod. The sensor does not use magnetic yoke. For the analysis and experimental verification, we used 30 mm diameter non-magnetic aluminum and also magnetic solid iron cylinders. The calculated and measured speed ranges are up to 1200 r/min. A 2-D analytical method is developed to calculate sensor performance. A 2-D finite element is also used for simulations to compare results with the 2-D analytical method. A 3-D finite-element analysis is required to take into account significant 3-D effects due to the air coil configuration. The experimental results are presented at different steady-state speeds. The calculation results are compared with measurements to validate theoretical models and sensor performance. The eddy current speed sensor shows high linearity even at low speeds. For ferromagnetic rods, we suggest a novel double-layer configuration: non-magnetic conductive ring or shell on top of the iron rod minimizes the influence of the permeability changes. The main advantage of the novel sensor is that it has neither mechanical nor electrical contact to the rotating rod

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ieee transaction on magnetics

  • ISSN

    0018-9464

  • e-ISSN

    1941-0069

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000481983400001

  • EID of the result in the Scopus database