All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Continual Occlusion and Optical Flow Estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332673" target="_blank" >RIV/68407700:21230/19:00332673 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1007/978-3-030-20870-7_10.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/978-3-030-20870-7_10.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-20870-7_10" target="_blank" >10.1007/978-3-030-20870-7_10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Continual Occlusion and Optical Flow Estimation

  • Original language description

    Two optical flow estimation problems are addressed: (i) occlusion estimation and handling, and (ii) estimation from image sequences longer than two frames. The proposed ContinualFlow method estimates occlusions before flow, avoiding the use of flow corrupted by occlusions for their estimation. We show that providing occlusion masks as an additional input to flow estimation improves the standard performance metric by more than 25% on both KITTI and Sintel. As a second contribution, a novel method for incorporating information from past frames into flow estimation is introduced. The previous frame flow serves as an input to occlusion estimation and as a prior in occluded regions, i.e. those without visual correspondences. By continually using the previous frame flow, ContinualFlow performance improves further by 18% on KITTI and 7% on Sintel, achieving top performance on KITTI and Sintel. 2019, Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ACCV 2018: Proceedings of the 14th Asian Conference on Computer Vision, Part IV

  • ISBN

    978-3-030-20869-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    16

  • Pages from-to

    159-174

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Perth

  • Event date

    Dec 4, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000490895400010