All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Generalization of Zippin's theorem on perturbing Banach spaces with separable dual

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00333045" target="_blank" >RIV/68407700:21230/19:00333045 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985840:_____/19:00495241

  • Result on the web

    <a href="https://doi.org/10.4064/sm170619-30-11" target="_blank" >https://doi.org/10.4064/sm170619-30-11</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/sm170619-30-11" target="_blank" >10.4064/sm170619-30-11</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Generalization of Zippin's theorem on perturbing Banach spaces with separable dual

  • Original language description

    We generalize a result on Banach spaces with separable dual which was first shown by Zippin, and was explicitly formulated by Benyamini. We prove that there is a class of Asplund spaces, which includes all spaces with separable dual, whose members can be perturbed inside a suitable ambient space to be contained in the space of continuous functions on a well-founded compact tree.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA16-07378S" target="_blank" >GA16-07378S: Nonlinear analysis in Banach spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia Mathematica

  • ISSN

    0039-3223

  • e-ISSN

    1730-6337

  • Volume of the periodical

    245

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    PL - POLAND

  • Number of pages

    15

  • Pages from-to

    169-183

  • UT code for WoS article

    000446981100003

  • EID of the result in the Scopus database

    2-s2.0-85060892080