Homomorphic images of subdirectly irreducible rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00333088" target="_blank" >RIV/68407700:21230/19:00333088 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1080/00927872.2018.1530246" target="_blank" >https://doi.org/10.1080/00927872.2018.1530246</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00927872.2018.1530246" target="_blank" >10.1080/00927872.2018.1530246</a>
Alternative languages
Result language
angličtina
Original language name
Homomorphic images of subdirectly irreducible rings
Original language description
We prove that every ring is a proper homomorphic image of some subdirectly irreducible ring. We also show that a finite ring R does not need to be isomorphic to the factor of a subdirectly irreducible ring by its monolith as well as R does not need to be a homomorphic image of a finite subdirectly irreducible ring. We provide an analogous characterization also for varieties of rings with unity, for the quasiregular rings, for the rings with involution and for their subvarieties of commutative rings.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Algebra
ISSN
0092-7872
e-ISSN
1532-4125
Volume of the periodical
47
Issue of the periodical within the volume
11
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
4432-4440
UT code for WoS article
000470626400001
EID of the result in the Scopus database
2-s2.0-85066035448