CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00337377" target="_blank" >RIV/68407700:21230/19:00337377 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/ICCV.2019.01011" target="_blank" >https://doi.org/10.1109/ICCV.2019.01011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV.2019.01011" target="_blank" >10.1109/ICCV.2019.01011</a>
Alternative languages
Result language
angličtina
Original language name
CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark
Original language description
We propose a new color-and-depth general visual object tracking benchmark (CDTB). CDTB is recorded by several passive and active RGB-D setups and contains indoor as well as outdoor sequences acquired in direct sunlight. The CDTB dataset is the largest and most diverse dataset in RGB-D tracking, with an order of magnitude larger number of frames than related datasets. The sequences have been carefully recorded to contain significant object pose change, clutter, occlusion, and periods of long-term target absence to enable tracker evaluation under realistic conditions. Sequences are per-frame annotated with 13 visual attributes for detailed analysis. Experiments with RGB and RGB-D trackers show that CDTB is more challenging than previous datasets. State-of-the-art RGB trackers outperform the recent RGB-D trackers, indicating a large gap between the two fields, which has not been previously detected by the prior benchmarks. Based on the results of the analysis we point out opportunities for future research in RGB-D tracker design.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/TE01020415" target="_blank" >TE01020415: V3C - Visual Computing Competence Center</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2019 IEEE International Conference on Computer Vision (ICCV 2019)
ISBN
978-1-7281-4803-8
ISSN
1550-5499
e-ISSN
2380-7504
Number of pages
10
Pages from-to
10012-10021
Publisher name
IEEE Computer Society Press
Place of publication
Los Alamitos
Event location
Seoul
Event date
Oct 27, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—