All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00337377" target="_blank" >RIV/68407700:21230/19:00337377 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ICCV.2019.01011" target="_blank" >https://doi.org/10.1109/ICCV.2019.01011</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCV.2019.01011" target="_blank" >10.1109/ICCV.2019.01011</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark

  • Original language description

    We propose a new color-and-depth general visual object tracking benchmark (CDTB). CDTB is recorded by several passive and active RGB-D setups and contains indoor as well as outdoor sequences acquired in direct sunlight. The CDTB dataset is the largest and most diverse dataset in RGB-D tracking, with an order of magnitude larger number of frames than related datasets. The sequences have been carefully recorded to contain significant object pose change, clutter, occlusion, and periods of long-term target absence to enable tracker evaluation under realistic conditions. Sequences are per-frame annotated with 13 visual attributes for detailed analysis. Experiments with RGB and RGB-D trackers show that CDTB is more challenging than previous datasets. State-of-the-art RGB trackers outperform the recent RGB-D trackers, indicating a large gap between the two fields, which has not been previously detected by the prior benchmarks. Based on the results of the analysis we point out opportunities for future research in RGB-D tracker design.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/TE01020415" target="_blank" >TE01020415: V3C - Visual Computing Competence Center</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2019 IEEE International Conference on Computer Vision (ICCV 2019)

  • ISBN

    978-1-7281-4803-8

  • ISSN

    1550-5499

  • e-ISSN

    2380-7504

  • Number of pages

    10

  • Pages from-to

    10012-10021

  • Publisher name

    IEEE Computer Society Press

  • Place of publication

    Los Alamitos

  • Event location

    Seoul

  • Event date

    Oct 27, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article