Improving CNN classifiers by estimating test-time priors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00337392" target="_blank" >RIV/68407700:21230/19:00337392 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/ICCVW.2019.00402" target="_blank" >https://doi.org/10.1109/ICCVW.2019.00402</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCVW.2019.00402" target="_blank" >10.1109/ICCVW.2019.00402</a>
Alternative languages
Result language
angličtina
Original language name
Improving CNN classifiers by estimating test-time priors
Original language description
The problem of different training and test set class priors is addressed in the context of CNN classifiers. We compare two approaches to the estimation of the unknown test priors: an existing Maximum Likelihood Estimation (MLE) method and a proposed Maximum a Posteriori (MAP) approach introducing a Dirichlet hyper-prior on the class prior probabilities. Experimental results show a significant improvement in the fine-grained classification tasks using known evaluation-time priors, increasing top-1 accuracy by 4.0%on the FGVC iNaturalist 2018 validation set and by 3.9%on the FGVCx Fungi 2018 validation set. Estimation ofthe unknown test set priors noticeably increases the accuracy on the PlantCLEF dataset, allowing a single CNNmodel to achieve state-of-the-art results and to outperform the competition-winning ensemble of 12 CNNs. The pro-posed MAP estimation increases the prediction accuracy by2.8% on PlantCLEF 2017 and by 1.8% on FGVCx Fungi,where the MLE method decreases accuracy.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/TE01020415" target="_blank" >TE01020415: V3C - Visual Computing Competence Center</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2019 IEEE International Conference on Computer Vision Workshops (ICCVW 2019)
ISBN
—
ISSN
2473-9944
e-ISSN
2473-9944
Number of pages
7
Pages from-to
3220-3226
Publisher name
IEEE Computer Society
Place of publication
Los Alamitos
Event location
Seoul
Event date
Oct 27, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—