All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving CNN classifiers by estimating test-time priors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00337392" target="_blank" >RIV/68407700:21230/19:00337392 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ICCVW.2019.00402" target="_blank" >https://doi.org/10.1109/ICCVW.2019.00402</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCVW.2019.00402" target="_blank" >10.1109/ICCVW.2019.00402</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving CNN classifiers by estimating test-time priors

  • Original language description

    The problem of different training and test set class priors is addressed in the context of CNN classifiers. We compare two approaches to the estimation of the unknown test priors: an existing Maximum Likelihood Estimation (MLE) method and a proposed Maximum a Posteriori (MAP) approach introducing a Dirichlet hyper-prior on the class prior probabilities. Experimental results show a significant improvement in the fine-grained classification tasks using known evaluation-time priors, increasing top-1 accuracy by 4.0%on the FGVC iNaturalist 2018 validation set and by 3.9%on the FGVCx Fungi 2018 validation set. Estimation ofthe unknown test set priors noticeably increases the accuracy on the PlantCLEF dataset, allowing a single CNNmodel to achieve state-of-the-art results and to outperform the competition-winning ensemble of 12 CNNs. The pro-posed MAP estimation increases the prediction accuracy by2.8% on PlantCLEF 2017 and by 1.8% on FGVCx Fungi,where the MLE method decreases accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/TE01020415" target="_blank" >TE01020415: V3C - Visual Computing Competence Center</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2019 IEEE International Conference on Computer Vision Workshops (ICCVW 2019)

  • ISBN

  • ISSN

    2473-9944

  • e-ISSN

    2473-9944

  • Number of pages

    7

  • Pages from-to

    3220-3226

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Los Alamitos

  • Event location

    Seoul

  • Event date

    Oct 27, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article