The Biaxial Strain Dependence of Magnetic Order in Spin Frustrated Mn3NiN Thin Films
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00337845" target="_blank" >RIV/68407700:21230/19:00337845 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/adfm.201902502" target="_blank" >https://doi.org/10.1002/adfm.201902502</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.201902502" target="_blank" >10.1002/adfm.201902502</a>
Alternative languages
Result language
angličtina
Original language name
The Biaxial Strain Dependence of Magnetic Order in Spin Frustrated Mn3NiN Thin Films
Original language description
Multicomponent magnetic phase diagrams are a key property of functional materials for a variety of uses, such as manipulation of magnetization for energy efficient memory, data storage, and cooling applications. Strong spin-lattice coupling extends this functionality further by allowing electric-field-control of magnetization via strain coupling with a piezoelectric. Here this work explores the magnetic phase diagram of piezomagnetic Mn3NiN thin films, with a frustrated noncollinear antiferromagnetic (AFM) structure, as a function of the growth induced biaxial strain. Under compressive strain, the films support a canted AFM state with large coercivity of the transverse anomalous Hall resistivity, rho(xy), at low temperature, that transforms at a well-defined Neel transition temperature (T-N) into a soft ferrimagnetic-like (FIM) state at high temperatures. In stark contrast, under tensile strain, the low temperature canted AFM phase transitions to a state where rho(xy) is an order of magnitude smaller and therefore consistent with a low magnetization phase. Neutron scattering confirms that the high temperature FIM-like phase of compressively strained films is magnetically ordered and the transition at T-N is first-order. The results open the field toward future exploration of electric-field-driven piezospintronic and thin film caloric cooling applications in both Mn3NiN itself and the broader Mn(3)AN family.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
1616-3028
Volume of the periodical
29
Issue of the periodical within the volume
August
Country of publishing house
DE - GERMANY
Number of pages
6
Pages from-to
—
UT code for WoS article
000481381100001
EID of the result in the Scopus database
2-s2.0-85070262668