All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On terminal coalgebras derived from initial algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00338247" target="_blank" >RIV/68407700:21230/19:00338247 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.CALCO.2019.12" target="_blank" >https://doi.org/10.4230/LIPIcs.CALCO.2019.12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.CALCO.2019.12" target="_blank" >10.4230/LIPIcs.CALCO.2019.12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On terminal coalgebras derived from initial algebras

  • Original language description

    A number of important set functors have countable initial algebras, but terminal coalgebras areuncountable or even non-existent. We prove that the countable cardinality is an anomaly: every setfunctor with an initial algebra of a finite or uncountable regular cardinality has a terminal coalgebraof the same cardinality.We also present a number of categories that are algebraically complete and cocomplete, i.e.,every endofunctor has an initial algebra and a terminal coalgebra.Finally, for finitary set functors we prove that the initial algebraμFand terminal coalgebraνFcarry a canonical ultrametric with the joint Cauchy completion. And the algebra structure ofμFdetermines, by extending its inverse continuously, the coalgebra structure ofνF.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics

  • ISBN

    978-3-95977-120-7

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    21

  • Pages from-to

    1-21

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl

  • Event location

    London

  • Event date

    Jun 3, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article