Predictive and Adaptive Maps for Long-term Visual Navigation in Changing Environments
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00338343" target="_blank" >RIV/68407700:21230/19:00338343 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/IROS40897.2019.8967994" target="_blank" >https://doi.org/10.1109/IROS40897.2019.8967994</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS40897.2019.8967994" target="_blank" >10.1109/IROS40897.2019.8967994</a>
Alternative languages
Result language
angličtina
Original language name
Predictive and Adaptive Maps for Long-term Visual Navigation in Changing Environments
Original language description
In this paper, we compare different map management techniques for long-term visual navigation in changing environments. In this scenario, the navigation system needs to continuously update and refine its feature map in order to adapt to the environment appearance change. To achieve reliable long-term navigation, the map management techniques have to (i) select features useful for the current navigation task, (ii) remove features that are obsolete, (iii) and add new features from the current camera view to the map. We propose several map management strategies and evaluate their performance with regard to the robot localisation accuracy in long-term teach-and-repeat navigation. Our experiments, performed over three months, indicate that strategies which model cyclic changes of the environment appearance and predict which features are going to be visible at a particular time and location, outperform strategies which do not explicitly model the temporal evolution of the changes.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GJ17-27006Y" target="_blank" >GJ17-27006Y: Spatio-temporal representations for life-long mobile robot navigation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISBN
978-1-7281-4004-9
ISSN
2153-0858
e-ISSN
2153-0866
Number of pages
7
Pages from-to
7033-7039
Publisher name
IEEE
Place of publication
Piscataway, NJ
Event location
Macau
Event date
Nov 4, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—