Modal Tracking Based on Group Theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00335599" target="_blank" >RIV/68407700:21230/20:00335599 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/TAP.2019.2943354" target="_blank" >https://doi.org/10.1109/TAP.2019.2943354</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TAP.2019.2943354" target="_blank" >10.1109/TAP.2019.2943354</a>
Alternative languages
Result language
angličtina
Original language name
Modal Tracking Based on Group Theory
Original language description
Issues in modal tracking in the presence of crossings and crossing avoidances between eigenvalue traces are solved via the theory of point groups. The von~Neumann-Wigner theorem is used as a key factor in predictively determining mode behavior over arbitrary frequency ranges. The implementation and capabilities of the proposed procedure are demonstrated using characteristic mode decomposition as a motivating example. The procedure is, nevertheless, general and can be applied to an arbitrarily parametrized eigenvalue problems. A treatment of modal degeneracies is included and several examples are presented to illustrate modal tracking improvements and the immediate consequences of improper modal tracking. An approach leveraging a symmetry-adapted basis to accelerate computation is also discussed. A relationship between geometrical and physical symmetries is demonstrated on a practical example.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Antennas and Propagation
ISSN
0018-926X
e-ISSN
1558-2221
Volume of the periodical
68
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
927-937
UT code for WoS article
000511198600032
EID of the result in the Scopus database
2-s2.0-85079291401