A MOMENT APPROACH FOR ENTROPY SOLUTIONS TO NONLINEAR HYPERBOLIC PDES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00338416" target="_blank" >RIV/68407700:21230/20:00338416 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3934/mcrf.2019032" target="_blank" >https://doi.org/10.3934/mcrf.2019032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/mcrf.2019032" target="_blank" >10.3934/mcrf.2019032</a>
Alternative languages
Result language
angličtina
Original language name
A MOMENT APPROACH FOR ENTROPY SOLUTIONS TO NONLINEAR HYPERBOLIC PDES
Original language description
We propose to solve hyperbolic partial differential equations (PDEs) with polynomial flux using a convex optimization strategy. This approach is based on a very weak notion of solution of the nonlinear equation, namely the measure-valued (mv) solution, satisfying a linear equation in the space of Borel measures. The aim of this paper is, first, to provide the conditions that ensure the equivalence between the two formulations and, second, to introduce a method which approximates the infinite-dimensional linear problem by a hierarchy of convex, finite-dimensional, semidefinite programming problems. This result is then illustrated on the celebrated Burgers equation. We also compare our results with an existing numerical scheme, namely the Godunov scheme.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA16-19526S" target="_blank" >GA16-19526S: Semidefinite programming certification of control laws for emerging transportation projects</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Control and Related Fields
ISSN
2156-8472
e-ISSN
2156-8499
Volume of the periodical
10
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
113-140
UT code for WoS article
000506869600005
EID of the result in the Scopus database
2-s2.0-85079831236