All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Terrain Learning Using Time Series of Ground Unit Traversal Cost

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342303" target="_blank" >RIV/68407700:21230/20:00342303 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-43890-6_8" target="_blank" >https://doi.org/10.1007/978-3-030-43890-6_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-43890-6_8" target="_blank" >10.1007/978-3-030-43890-6_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Terrain Learning Using Time Series of Ground Unit Traversal Cost

  • Original language description

    In this paper, we concern learning of terrain types based on the traversal experience observed by a hexapod walking robot. The addressed problem is motivated by the navigation of unmanned ground vehicles in long-term autonomous missions in a priory unknown environments such as extraterrestrial exploration. In such deployments, the robotic vehicle needs to learn hard to traverse terrains to improve its autonomous performance and avoid possibly dangerous areas. We propose to utilize Growing Neural Gas for terrain learning to capture the robot experience with traversing the terrain and thus learn a classifier of individual terrain types. The classifier is learned using a real time-series dataset collected by a hexapod walking robot traversing various terrain types. The learned model can be utilized to predict the traversal cost of newly observed terrains to support decisions on where to navigate next.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    6th International Workshop on Modelling and Simulation for Autonomous Systems

  • ISBN

    9783030438890

  • ISSN

  • e-ISSN

    1611-3349

  • Number of pages

    11

  • Pages from-to

    97-107

  • Publisher name

    Springer

  • Place of publication

    Wien

  • Event location

    Palermo

  • Event date

    Oct 29, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000628847000008