HUMAN - Hierarchical Clustering forUnsupervised Anomaly Detection & Interpretation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342469" target="_blank" >RIV/68407700:21230/20:00342469 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/NoF50125.2020.9249194" target="_blank" >https://doi.org/10.1109/NoF50125.2020.9249194</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/NoF50125.2020.9249194" target="_blank" >10.1109/NoF50125.2020.9249194</a>
Alternative languages
Result language
angličtina
Original language name
HUMAN - Hierarchical Clustering forUnsupervised Anomaly Detection & Interpretation
Original language description
The automatic detection and interpretation of network traffic anomalies through machine learning is a well-known problem, for which no general solution is available. Both supervised and unsupervised (i.e., anomaly detection) approaches require prior knowledge on the monitoring data, either in terms of normal operation profiles or on the specific anomalies to detect. As a consequence, both approaches have clear limitations when it comes to detecting, and in particular interpreting, previously unseen events. We present HUMAN, a general hierarchical-clustering-based approach for unsupervised network traffic analysis, which can both detect and interpret anomalous behaviors ina completely black-box manner, without relying on any ground-truth on the system under analysis. HUMAN can detect and interpret complex patterns in the analyzed data, using a structural approach which exploits hierarchical cluster relationships and correlations among features. We describe the building blocks of HUMAN and explain its functioning in detail, using as case study the detection and interpretation of performance issues in major cloud platforms, through the unsupervised analysis of distributed active cloud latency measurements. The HUMAN approach can be applied to the unsupervised analysis of any kind of nested or hierarchically structured multi-dimensional data, showing the potential of hierarchical clustering for general unsupervised data analytics.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20202 - Communication engineering and systems
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
11th International Conference on Networks of the Future (NoF 2020)
ISBN
978-1-7281-8055-7
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
132-140
Publisher name
IEEE
Place of publication
St. Paul, Minnesota
Event location
Bordeaux
Event date
Oct 12, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—