EPOS: Estimating 6D Pose of Objects with Symmetries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342587" target="_blank" >RIV/68407700:21230/20:00342587 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/CVPR42600.2020.01172" target="_blank" >https://doi.org/10.1109/CVPR42600.2020.01172</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR42600.2020.01172" target="_blank" >10.1109/CVPR42600.2020.01172</a>
Alternative languages
Result language
angličtina
Original language name
EPOS: Estimating 6D Pose of Objects with Symmetries
Original language description
We present a new method for estimating the 6D pose of rigid objects with available 3D models from a single RGB input image. The method is applicable to a broad range of objects, including challenging ones with global or partial symmetries. An object is represented by compact surface fragments which allow handling symmetries in a systematic manner. Correspondences between densely sampled pixels and the fragments are predicted using an encoder-decoder network. At each pixel, the network predicts: (i) the probability of each object's presence, (ii) the probability of the fragments given the object's presence, and (iii) the precise 3D location on each fragment. A data-dependent number of corresponding 3D locations is selected per pixel, and poses of possibly multiple object instances are estimated using a robust and efficient variant of the PnP-RANSAC algorithm. In the BOP Challenge 2019, the method outperforms all RGB and most RGB-D and D methods on the T-LESS and LM-O datasets. On the YCB-V dataset, it is superior to all competitors, with a large margin over the second-best RGB method. Source code is at: cmp.felk.cvut.cz/epos.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
ISBN
978-1-7281-7169-2
ISSN
1063-6919
e-ISSN
2575-7075
Number of pages
10
Pages from-to
11700-11709
Publisher name
IEEE Computer Society
Place of publication
USA
Event location
Seattle
Event date
Jun 13, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—