All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reverse Conduction Loss Minimization in GaN-Based PMSM Drive

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00343982" target="_blank" >RIV/68407700:21230/20:00343982 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/electronics9111973" target="_blank" >https://doi.org/10.3390/electronics9111973</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/electronics9111973" target="_blank" >10.3390/electronics9111973</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reverse Conduction Loss Minimization in GaN-Based PMSM Drive

  • Original language description

    Gallium nitride (GaN) devices are becoming more popular in power semiconductor converters. Due to the absence of the freewheeling substrate diode, the reverse conduction region is used in GaN transistors to conduct the freewheeling current. However, the voltage drop across the device in the reverse conduction mode is relatively high, causing additional power losses. These losses can be optimized by adequately adjusting the dead-time issued by the microcontroller. The dead-time loss minimization strategies presented in the literature have the common disadvantage that either additional hardware or specific converter data are needed for their proper operation. Therefore, this paper’s motivation is to present a novel dead-time loss minimization method for GaN-based high-frequency switching converters for electric drives that does not impose additional requirements on the hardware design phase and converter data acquisition. The method is based on optimizing the current controllers’ output with a simple perturb-and-observe tracker. The experimental results show that the proposed approach can minimize the dead-time losses over the whole drive’s operating range at the cost of only a moderate increase in software complexity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronics

  • ISSN

    2079-9292

  • e-ISSN

    2079-9292

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

  • UT code for WoS article

    000593594500001

  • EID of the result in the Scopus database

    2-s2.0-85096623087