All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Convergence Rate for Diminishing Stepsize Methods in nonconvex Constrained Optimization via Ghost Penalties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00344665" target="_blank" >RIV/68407700:21230/20:00344665 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1478/AAPP.98S2A8" target="_blank" >https://doi.org/10.1478/AAPP.98S2A8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1478/AAPP.98S2A8" target="_blank" >10.1478/AAPP.98S2A8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Convergence Rate for Diminishing Stepsize Methods in nonconvex Constrained Optimization via Ghost Penalties

  • Original language description

    This is a companion paper to “Ghost penalties in nonconvex constrained optimization: Diminishing stepsizes and iteration complexity" (to appear in Mathematics of Operations Research). We consider the ghost penalty scheme for nonconvex, constrained optimization introduced in that paper, coupled with a diminishing stepsize procedure. Under an extended Mangasarian-Fromovitz-type constraint qualification we give an expression for the maximum number of iterations needed to achieve a given solution accuracy according to a natural stationarity measure, thus establishing the first result of this kind for a diminishing stepsize method for nonconvex, constrained optimization problems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Atti della Accademia Peloritana dei Pericolanti. Classe di Scienze Fisiche, Matematiche e Naturali

  • ISSN

    1825-1242

  • e-ISSN

    1825-1242

  • Volume of the periodical

    98

  • Issue of the periodical within the volume

    S2

  • Country of publishing house

    IT - ITALY

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000606838900011

  • EID of the result in the Scopus database

    2-s2.0-85100876434