All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Well-Founded and Recursive Coalgebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00346322" target="_blank" >RIV/68407700:21230/20:00346322 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-45231-5_2" target="_blank" >https://doi.org/10.1007/978-3-030-45231-5_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-45231-5_2" target="_blank" >10.1007/978-3-030-45231-5_2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Well-Founded and Recursive Coalgebras

  • Original language description

    This paper studies fundamental questions concerning category-theoretic models of induction and recursion. We are concerned with the relationship between well-founded and recursive coalgebras for an endofunctor. For monomorphism preserving endofunctors on complete and well-powered categories every coalgebra has a well-founded part, and we provide a new, shorter proof that this is the coreflection in the category of all well-founded coalgebras. We present a new more general proof of Taylor’s General Recursion Theorem that every well-founded coalgebra is recursive, and we study conditions which imply the converse. In addition, we present a new equivalent characterization of well-foundedness: a coalgebra is well-founded iff it admits a coalgebra-to-algebra morphism to the initial algebra.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science

  • ISBN

    978-3-030-45230-8

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    20

  • Pages from-to

    17-36

  • Publisher name

    Springer

  • Place of publication

    Basel

  • Event location

    Dublin

  • Event date

    Apr 25, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article